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Resummed two-loop calculation of the disjoining pressure of a symmetric electrolyte soap film
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In this paper we consider the calculation of the disjoining pressure of a symmetric electrolytic soap film
correct to two loops in perturbation theory. We show that the disjoining pressure is finite when the loop
expansion is resummed using a cumulant expansion and requires no short distance cutoff in order to give a
finite result. The loop expansion is resummed in terms of an expansigelig/lp wherelp is the Debye
length andg is the Bjerrum length. We show that there there is a nonanalytic contribution of @tdéy). We
also show that the two-loop correction is greater than the one-loop term at large film thicknesses suggesting a
nonperturbative correction to the one-loop result in this limit.
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I. INTRODUCTION presence of a neutral surface and a symmetric monovalent

o o ) electrolyte the mean-field electrostatic potential is zero and
The determination of the effective interaction betweenthe one-loop contribution about this trivial mean-field solu-

two surfaces of a film-like structure is essential for the Un-tion is equiva|ent to Debye-HUCke| theory_ The 0ne-|00p re-
derstanding of the conformational stability of a whole rangesult is described and computed in R¢5] and has been
of systems in soft-condensed matter physics. Examples arederived using a variety of different methods, for instance
found in interactions between membranes and colloid physsee Refs[7,8]. In the absence of electrolyte the zero fre-
ics [1]. The effective interaction between two semi-infinite quency contribution to the effective interaction, commonly
dielectrics separated by a vacuum was calculated by Lifshitknown as the disjoining pressuRy, behaves a®y~-A/I3
[2] and the effect of an intervening dielectric was determinedor a film of thicknessl. In the presence of electrolyte, at
by Dzyaloshinski, Lifshitz, and PitaevskiB] and subse- large film separations relative to the Debye lentgh the
quently reformulated more simply in Re#]. The effective  disjoining pressure is screened at one loop and has the form
interaction is due to van der Waals or dispersion forces and ipy~-A exp(—2/1p)/1. In both of these cases the constant
given by the sum over the Matsubara modes of the problems positive and, hence, the effective force between the sur-
the nonzero frequency modes are a quantum effect and thgces is attractive at one-loop order.
contribution of zero modes correspond to a thermal Casimir |n this paper we calculatg, to two-loop order. The naive
type effect. In purely dielectric problems the contribution of two-loop calculation is in fact divergent when the dielectric
each mode is described by a free Gaussian field theory anddbnstant of the film, or slab, is greater than that of the exte-
has been shown how the input to these free field theories cafor [9], but we show here that the result can be resummed
be determined using dielectric data, see R&f, and refer-  using a cumulant expansion similar to that used in [RE0]
ences therein. for the bulk to give a finite result which we argue is to be
In many situations, especially in biology, the middle slabexpected on physical grounds. The expansion we use can be
of the system is filled with an electrolyte. For example, thiscontrolled systematically, and the perturbative parameter is
is the case for a simple soap film connected to a bulk whicly=1,/15, wherelg is the Bjerrum length. While the one loop
is filled with an aqueous salt solution. It has been argé@d or first term in the expansion igis regular, the second order
that the presence of an electrolyte will not effect the nonzeraerm in g is of the formg2n(g), this singular behavior is
frequency contribution to the interaction basically becausgound in the Onsager-Samaras limiting law for the excess
the response time of the ions is too large to couple them t@yrface tension of electrolyte solutions and has its origin in
the these nonzero frequency modes. However the zerqhe image forces which repel the ions from the air/water
frequency, or static, component of the interaction doesnterface. We also analyse the behavior of @(@?) term for
couple to the ionic distribution and consequently its contri-|arge film thickness and find that this term has the behavior
bution is strongly affected by the presence of electrolyte. The—A'In(I/ID)exp(—ZI/ID)/I, which means that it becomes
field theory describing the zero frequency fluctuations of_thqargler than the one-loop result for very thick films. We con-
electric field in the presence of ions is no longer a free f'elqecture that this result suggests that it is the first term in a

theory; the interactions are made up of two components: thgeries which sums to give a contribution at laigeo the
basic thermal fluctuations of the electrostatic field and theyisioining pressure with behavidpy~-A"exp(-21/15)/1¢

induced Coulombic interactions between the ions. In thg here the exponent has the forma=1+a,g+a,g2. .. .

Il. TWO-LOOP CALCULATION

*Electronic address: dean@irsamc.ups-tise.fr The model of the soap film we shall consider is the fol-
"Electronic address: rrh@damtp.cam.ac.uk lowing. The film body is a planar slab of thickneksur-
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rounded on both sides by an external dielectric medium sucpressurePr over the bulk pressurBg and can be measured
as air. The interior of the film is filled with electrolyte and exactly using a pressure c¢ll2]:
connected to a bulk reservoir of electrolyte. The electrolyte
consists of a passive solvent of uniform dielectric constant Pq(l) = Pe(l) = Ps. (6)
containing monovalent anions and cations which are treateg, fim pressure depends explicitly on the film thickness
as point charges of charges ande, respectively. The elec- .4 ig given by
trolyte is symmetric in the sense that the anions and cations
are identical in every respect other than that they have oppo- 10
site electric charges. Pe(l) = Kﬂln[:F(l)]- (7

In what follows we shall use the standard field theoretic
formulation for symmetric monovalent electrolyte systemsThe bulk pressure is defined in the thermodynamic limit and
[11]. The grand partition function for a film of electrolyte is given by
solution, surrounded on both sides by an external medium

i i is i 1. 9,
such as air, of thicknedsis given by Py = : I“”‘a'n[ﬂs(')]- )
Eell) = f diglexp(S 41D, (1) In order to develop a systematic expansion for the disjoining
] o pressure we pass to the rescaled model in terms of the res-
where the actiors: of the film is given by caled field
Slel]l=- pe f dx(V ¢)* +2 f dx codeBe) Vg
' 2 ). #). b— — ¢, 9
I | es
- @J dx(V ¢)2. (2) and we measure length in terms of the Debye lerigth
2
e X — Xlp, (10

The region inside the film is denoted Iy and, if z is the ‘
coordinate perpendicular to the film surface, tifgnis the ~ Wherem=42pe?B/e is the Debye mass angh=1/m. The
regionze [0,1]. InsideF,, the dielectric constant isand is ~ dimensionless coupling is given by g=Ig/lp where Ig
taken to be that of the solvent, in most cases water, and thie€’8/4me is the Bjerrum length. In units of the Debye
fugacities for the cations and anions in this symmetric eleclength we denote the thickness of the film by!/Ip.

trolyte are the same and are denotedbyThe region out- The disjoining pressurgy is obtained from the disjoining
side the film is denoted bfg; in Fg there is no electrolyte Pressure of the rescaled mode] using

and the dielectric constant is denoteddgyIn this paper we _ _

consider the physically relevant case whetee,. Pq= Py = 8mpgPy. 11

For a bulk solution of thicknedsthe grand partition func-  1he effective action for the film in terms of the rescaled

tion is given by fields and lengths is
= (|)=fd[¢]eXp(SB[¢,|]), (€ __1 2 @f 1
B S=-g- - dx(V ) +47Tg . dx cogVg¢)
whereS; is the bulk action
Be - dx(V ¢)?, (12)
$=-7 f dx(V ¢)> + 2u f dx cogefg). (4 8 Jee
B B

where n=¢,/ e and the renormalization factat(g) simply
Here there is no contact with an exterior region and one cabecomes
close the system by using periodic boundary conditions in

the z direction. The value of the fugacity is determined by 2(g) = 1_ (13)
the bulk densityp and is given by (cogVge))s
_ p -7 (5) where again the expectation value in the equation above is
H (codeBp))s P for an infinite bulk system. The actio§ can be decom-
. L posed as
Here,Z '=(cogeB¢))g is a renormalization factor account-
ing for ion self-interactions, and the expectation is taken at _Z(9) )
an arbitrary position in an infinite bulk system, i.e, whére Sg= 4WgVF+SF +ASE, (14

— o0, In experiments on planar systems or films the physical

guantity which is measured is the disjoining pressure whichwhereVg is the volume of the film and the first term is the
is due to the effective interaction induced by the presence dfieal contribution. The ternaS(FO) is the action for a free or
the film surfaces. The disjoining pressure is the excess filnGaussian field theory and is given by
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0) —
Q=

| vere - | axver,

a F v Fe
(15)

The interacting part oS is expressed as a perturbation

1 2
ASe= dX{Z(g)[COS(\'gqb) 1+ %} (16)
T Fl

and the actiorsg for the equivalent bulk system is given by

1 Z q
SB=_8_77JB o|x(V</>)2+4(—7fgfB dx cosvgg). (17)

Clearly Sg is invariant underp— —¢ and, hence, from Eg.

(13) one must have the expansion

2(9)=1+z0+2,0°+20°+ ... (18)
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spurious divergence due to the image charge singularities. In
the expansion for the disjoining pressure we must first iden-
tify the correct Boltzmann factor associated with the image
charge potential, which is not expansiblegnand only then
may we expand the remaining contributions to ordeto
obtain the two-loop divergence-free result for the disjoining
pressure. We will find a term that behaves likin(g) which
indicates that some contributions are indeed not expansible
in g. Therefore, at two-loop order we use the form &y
given in EQ.(22) and a similar form form foiS- which we
discuss later. Then t@(g) we have

Using the same decomposition for the bulk action as for the

film action we obtain

Z 1 1
SB = %VB - ETJB dX[(V ¢)2 + ¢2] + 4—77ng dX{Z(g)
2
X (cos\ge) - 1) + %} (19)

whereVg is the bulk volume. To ordeg the actionSg may
thus be written as
1+zg9+ Zzg

Sg= 4—7rg f d{(V)* + ¢°]

¢ zd?
+47Jd{4| 2

Hence, in order to calculate (Eg) to orderg one needs to
evaluateZ(g) to orderg®. We define

} +0(g?. (20)

Z,(9) = (21)

1
(cod\gBHn-1’
where the notatiogO),, signifies the expectation value 6f
evaluated tath order in the cumulant expansion. Th&nis
an approximation ta&Z correct up to and includin@(g").
Then we can writeSg correct to ordeg as

Sp= 229y, L f (V2 + ¢2] + f dx} Z1(9)
8w B 47Tg B

47g
2
x[cos\ge) - 1] + %} (22)

2

In(Ep) = Z(Z)VB +In(Eg ) +(AS)s 0+ O(g?), (23)
where
EB,o=f dl ¢lexp(Sg0), (24)
with
1
Sgo=- 8_f dx[(V ¢)? + ¢?], (25
TJB
and
2
§= - f dx{zl<g)[cos<vg¢> 1+ 8 } (26)

The last term is just the first term in the cumulant expansion
about the free field theory with actia$g o and is given by

f dl#]lexp(Sp o)AS
(AS)g o= (27)
f dlplexp(Sg o)
Inside the bulk we define
(¢(X)$(X))g,0=Gg(0), (28)

by translational invariance within the bulk. This now yields

1 g ]
Z(0) = —— = =exp 26,40, 29
1(9) (oo Nms exr{z s(0) (29
and
in(Ze) = 29V, + n(Z) +V—{1+ 964(0)
4mg 4mg
- ex;{ gGB(O)} } +O(?). (30)

Clearly calculating with the action above gives the value ofOne now carries out exactly the same calculation in the film
In(Eg) correct to ordelg which includes the two-loop term where within a film of thicknest we define

in the loop expansion coming from the temwy?*/4! in the

interaction term. We might go further and expand the inter-

action term and keep only terms of ordgrHowever, when
we consider the computation of the partition functigp for

(d(X) p(X))g 0= Gr(z,L), (31

where the field correlator at coinciding points now depends
on the distance from the surface of the film and, its

the film we shall see that the naive expansion of the interacthickness{¢(x) ¢(y))e o is the propagator for the actic .
tion term in this manner is illegal because it gives rise to aVe then obtain td(g):
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= _2%(9 - 1 ( 1) . In[Eg(L")]
Er) = = — Bo(L) = —yIn[Ego(L)]-L Iim ————¢, (34
In(Eg) ry Ve +In(Eg o) + amg ), dx| ex o(L) A n[Eeo(L)] L]Tw L (34
- g[GF(z, L) —GB(O)]} + gGF(z, L) is the one-loop 0O(1) contribution in the expansion ig,
andA is the area of the film. The two-loop term, or term to
0O(g), is given by
- exp{gGB(O)]) +0(g?). (32)

L
In the limits L—o,z—0o,2/L—0, we recover the expres- By(L) = ij dz{exp[— QGR(Z, L)} -1 +9GR(21L)}1
sion for In(Zg) in Eq. (30). We note that the exponent of the 4mgJo 2 2

first exponential under the integral sign in £E§2) contains (35)
the repulsive image charge potential which is singular as

— 0. Evidently, it is illegal to expand this exponential as it with

stands and it is clear that it contains the correct Boltzmann
factor for the potential due to the image charges. In terms of

the rescaled system the disjoining pressure is then given by Gr(zL) =Gg(zL) = Gg(0). (36)
p P We note that there is no need to calculigg), the ap-
BPy=——Bo(L) + —By(L), (33)  proximation toZ(g) accurate toO(g?), in order to compute
JL JaL L . ; . .
the disjoining pressure, since this term is the same in both
where the film and the bulk and hence cancels identically. We find

” 2I'%(P)exp(— 2PL) + I'(P)exd — 2P(L - 2)] + I'(P)exp(- 2P2)
Gr(zL)=| dP , 37
R@L) L { 1-T2(P)exp(- 2PL) 37
[
where B, amounts to an illegal expansion of a Boltzmann weight

o which keeps charge away from the surface. This term needs

_P-nyP*-1 to be treated with care as in the Onsager-Samgraiscal-

= — (398 . ; - ;
P+n/P2-1 culation of the excess surface tension of ionic solution where

) . a similar term also arises. Any divergence arising from such
We can compare the result in E@5) with the result of Netz 5, illegal expansion is spurious.

[9] where he computes the two-loop contribution to the free  \ye Wwrite

energy of the film. When normalized with respect to the bulk

free energy, the result of Netz agrees with E35) expanded BPy= BP&O) + ,87331), (39

to and truncated a(g). In the case wherd =0 the expres- o N o

sion of Netz is indeed the disjoining pressure correct to twd/N€re Pq is the O(g") contribution t07y. The one-loop,
loops. However, in the case wheses(1-n)/(1+n)>0, i.e., O(1), contribution to the d|510|n.|ng. pressure has been
when there is dielectric discontinuity in the system, the ex-Vorked out by many authors and is given by

pression truncated &(g) is divergent. As already remarked, 1 [ I2(P)exp(- 2PL)
this is due to the presence of image charges which repel BP&O):—Z—J PzdPl_F2 = —opL)"
charge away from the surface into the film whep-0 as is 1 (P)expl )
the case of air/water films, for example. Netz obtains a finite=rom the above equation we find the two-loop contribution
result using this truncated expansion by introducing an ultragg pe given by

violet (UV) cutoff in the P integration definingGg(z,L) in

Eq. (37). The UV cutoff is associated with a microscopic @ 1 9 g _
length scale such as the ionic radius of the solute, and atﬂpd 47g ex 2GR(L/2’L) " 2GR(L/2'L) !

I'(P)

(40)

three loop order and above it can be shown that it is neces- L2
sary to impose such an UV cutoff in order to obtain a finite + = dz—Gr(z,L){ 1 - exp{— QGR(Z, L)} _
result; the physical nature of the divergence in this case is the 4m ), aL 2

collapse of opposite charged ions onto each other which is (41)
then regulated by a hard-core repulsion. At two loops there is

no such effect and the UV cutoff is not needed to obtain aVe emphasize that this expression is finite forlat 0 and
finite result. Expanding the exponential in the expression forequires no UV regularization.
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We may attempt to expand E@1) to O(g) to get that the assumption th&y can be naively expanded tis

. . U2 5 incorrect.
Pl = = G4L/2,L)+ —J dzGx(z,L)—Gg(z L
PP = 5o ( ) 8 ), Gr( )(ﬂ_ r(zL) Ill. LARGE L ASYMPTOTICS
+O(@). 42) In this section we will analyze the asymptotic behavior of

the disjoining pressure of thick films. We start by recalling

thus giving what naively looks like the two-loop contribu- the one loop result. At large the behavior of the integral

tion. determlmngP(O) in Eq. (40) is dominated by smalP, i.e.,
The function G(z,L) can be shown to be finite every the contr|but|on to the integration coming from neRr1.

where forze [0,L/2] except aiz=0. It is straightforward to  The leading term for large is [5]:

isolate the divergent part @bg(z,L) nearz=0, and we find

exp(— 2L
that BPY =~ - L. (49)
4L
exp(— 22) L L .
Gg(z,L) = A2— +Gg(z,L), (43 We see that the thick film disjoining pressure at one loop is
z

attractive and exponentially screened with characteristic
lengthlp. Interestingly, the value ok does not appear in the

where Gg(z,L) is finite for all ze [0,L/2]. Hence, the first , ! : HUoe: i
leading term of this expression which is therefore indepen-

term of Eq.(42) is finite but the second has a logarithmic

divergence az=0 whenA>0. Introducing a largd® cutoff
in the integral in Eq(37) defining Gg(z,L), as was done in

dent of the strength of the dielectric discontinuity between
the film and exterior. For large we find that

Ref. [9], eliminates the 17 singularity inG(L,z) but has no exp(—L)

physical basis, in fact it is eliminating a physical effect Gr(L/2,L)=2 L (50)
which should be there due to the presence of image charges;

the divergent term of5(z,L) should be kept in the expo- and thus

nential (which is just the Boltzmann factor due to the image g exp( 2L)

charges We can now carry out a legal expansiorgifor the ,BP(la &8s L2 (52)

terms which give finite contributions, and obtain

L/2
BPY = 37(32(L/2 L)+ = J dzGy(z, L)— RZL)+
L2 ~2z
A
+— dz—%(z,L)[l—ex;{—g € )}
4 0 aL 4z
(44)

We now write the two-loop contribution to the disjoining
pressure as the sum of these three terms

BP§’=BPG™ + BP4" + BP4°. (45)

The first two terms can be immediately written down and a

careful asymptotic analysis of the last term of E44) gives
a finite resummed two-loop contribution

BPL = 32 GA(L/2,L), (46)
L/2
(lb) =4 J Z{GR(Z L) Gg(z L) - R(O L)}
! a !

+Gh(z, L)a—LGR(o,L)}) , (47)

A A

(10) = 196 { R(OL)[ (92>+1-2y”,

(48)

where y=0.577 215. ..
third term a contribution proportional tgIn(g) signifying

which is clearly negligible with respect to the one-loop con-
tribution at largeL.

The behavior ofG’(z,L) at largeL is given to leading
order by

Gh(zL) = exp(- ZL){E + %Liexp(Zz)
+ %Liexp( 22)] +H(2), (52
where
H(z) = f dP[(I'(P) — A)Jexp(—- 2P2). (53
Hence,
11
—GR(Z L) =-2 exg— ZL){E + EL—exp(Zz)
11
+ EL_EXp( 22)] (54)

Using this result we find that for lardethe leading behavior
is

-2L 8
-nin(2)]+ O( L}’Z’ Inl(_L) ) } (55

is Euler’s constant. We see from theand for the special cage=0 the nonleading(1/L'?) cor-

rection is absent and this result becomes
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g exp-2L)

1 1
160 L In(L) + y+ ZIn(L)+O<[)}.

P ~ -

o
(56) R o numerical integration
asymptotic fit

It can be shown that the coefficient of €x@L)In(L)/L is
independent of in the general case and is therefore given

for any value ofn by this result. Hence, as in the caseRé?) -
the leading contribution t(P<l) at largeL is also independent s~
of A. 2y
We also find al
A exp(— 2L
BP{Y ~ - g—L[— In(gA/2) +1-2y). (57)
47 L
We notice that if we take the contribution of the one-loop
term with the leading two-loop term then we have >, 10 20 20 20
exp— 2L L in units of Debye length |,
BP%—L{1+9In(L)] (58)
Aml 4 FIG. 1. Computed data defjlb)(L) given in terms ofPfjlb) in

Eq. (61). The solid curve is the prediction for the asymptotic
dependence from Eq55) with an additional fitted term propor-

exp(— 2L tional to 1. The equation for this curve is given in 2.
8P~ - p-2l) (59 q g E62)

1-g/4
AL tant comparison is with the one-loop res@f) which cor-
If valid, the terms leading to this resumation must come fromyesponds to the attractive Casimir force and which is present
higher-order terms in the cumulant expansion. It can be verieven asp— 0, that is,g— 0. In this limit 73 arises solely
fied that they do not arise from higher-order termgjiim the ~ from the thermal fluctuations of the electrostatic field in the
expansion of Eq(41). presence of interfaces of dielectric discontinuity. In the limit
Examining the contributions t@PY as defined by Eq. g—0 the two-loop contribution must vanish since the one-
(45) at largeL we see thaP? is clearly subdominant, but 100P result is exact; this can be seen in the expressions given
althoughgPW is clearly the leading term at very largeve  €arlier. However forg>0 we see thaP}’ is of the same
must bear in mind that this expansion is valid for sngall ~ Sign asPy’ and so corresponds to an mcrease in the attrac-
Comparing Eq(56) with Eq. (57) we see that there exists a tive force. In Fig. 2 we plot the ratic®} /7>d for various

which suggests the speculative resumation

crossover length.” defined by values ofg 9=0.1,0.3,0.5. We see tha%d is comparable
. . with 730 for g~0.5 over a wide range of values of the film
L ~1/g", (60) th|cknessL For small enough. (L <2) the one-loop result

such that for kL <L" we havegPY~ gP19 and thus in  eventually dominates. It is clear trfﬁhl) scales, as expected,
this regiongPY has the same functional form a the one-loopapproximately linearly wittg in the small range considered.
result. Thus only fol.>L" does one see the modification of The valueg~0.5 corresponds to a solute density in water of

the functional form of3P with respect to the one-loop result. about 50 mM at room temperature. This result shows that a
guantitative analysis of the collapse phenomenon in a thin

IV. NUMERICAL RESULTS electrolyte soap film must take account of higher-order ef-
fects for solute densities greater than 10 mM. An important
point to note is that botrPéO) and Pfjl) are negative for all
L >0, and so the two-loop contribution adds to the attractive
force between the interfaces.
20T 2L g(ib) In Fig. 3 we plot the ratigP 1>/73(1°) where the denomi-
BP (61) 41)

nator is the approximation t@ given in Eg.(57). This
approximation arises from the resummed terms which prop-
;/s L E%m_‘l)_lﬁted r;.lén;_erlcgllyzhu&ng eqégp' ]S43)' 3nq (4? f erly account for the Boltzmann factor associated with the
o(rlb)n— - [he Solid fine 1s the asymptolic form derived tor image charges. It is clear that this approximation is a good
Ry (L).from the expression in '_E(_QSB) but mcludmg aterm _one over a wide range of film thicknessand shows that the
proportional to 1L whose coefficient we determine by a fit yominant contribution in this range behavesgds(g). It is

The major result of this paper for the largeasymptotic
behavior ofP, is the expression E@55). In Fig. 1 we show
data points for

RO = 167

to the data. This fit curve is clear that this should be the case in this range as in the case
1 1.453 54 g=0.5, from Eq.(3) L' ~16.
(L) =-y-InL) - ——In(L) - ———. (62
R 7 2L L V. CONCLUSION
It is not useful to directly pIoP given in Eq.(41) since In this paper we have carefully calculated the two-loop

it is a rapidly changing function olf. However, the impor- contribution Pgl), to the disjoining pressure for a thin elec-

011101-6



RESUMMED TWO-LOOP CALCULATION OF THE..
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L in units of Debye length I,

FIG. 2. The ratio of the two-loop contributior‘l?él), and the
one-loop contributionP'?, to the disjoining pressure is plotted for
different values ofg=Ip/lg: g=0.1,0.3,0.5. We see thal"él) is
comparable Witl‘v?fjo) for g~ 0.5 over a wide range of values of the
film thicknessL. For small enough. (L<2)the one-loop result
eventually dominates. It is clear th@ﬁjl) scales, as expected, ap-
proximately linearly withg in the small range considered. The

value g~ 0.5 corresponds to a solute density of about 50 mM atl

room temperature.

trolyte soap film of thickneslsand monovalent solute density

p. The surfaces of the film are the interfaces of dielectric?
discontinuity separating the film interior of dielectric con- S
stante from the exterior which consists of nonionic medium contribution, 7,7,

PHYSICAL REVIEW E 70, 011101(2004

cussed in earlier worf8]. All quantities can be expressed in
dimensionless form in terms of the coupling constgnt
=lg/lp and n=¢y/ €, with overall dimensions carried by the
Debye massn. By naive power counting thi&-loop contri-
bution is theO(gN\™Y). The self-energy divergences are in-
cluded in the explicit renormalization constaf(ig) defined

in Eq. (5).

We have compute(ZPgl) in the cumulant expansion of the
film free energy I0=¢) given in terms of the effective action
S:(¢,L) defined in Eq(12). Although, we are naively work-
ing to O(g) it is clear that it is illegal to expand all terms to
this order since the effect of image charges is to introduce a
spurious ultraviolet divergence in this case. As an ion at dis-
tancez from an interface approaches the interface the image
potential is repulsive and diverges likBV,(z)~=gA/2z,
where A=(1-n)/(1+n). It is necessary to keep the Boltz-
mann factor exp-BV,(2)] intact for this otherwise divergent
contribution, which is then regulated in the proper way. The
resulting expression fo‘Pgl) is given in Eq.(44). The out-
come is that the naive expectation that this contribution is
O(g) is incorrect and the asymptotic analysis of the expres-
sion for 7?&1) gives the termPélC) shown in Eq.(48) which
contains a term of ordeg In(g). Moreover, in Fig. 3 we see
that the approximate expressid?ﬁjlc) contributes the major
part of the full result for smalL=1/lp, and so the collapse
phenomenon observed in thin electrolytic soap films may be
modified significantly by such nonanalytic terms. From Fig.
2 we observe that the two-loop and one-loop contributions
re comparable fog~ 0.5, corresponding to solute densities
p~50 mM. ForL<1 we would still expect the one-loop

O to dominate all others on physical

of dielectric constan,. The length scales in the problem are 9rounds; the image charges will ensure that all ions are ex-

set by the Bjerrum lengthg=€?8/(4me) and the Debye
length I5*=m=12pe’B/ . The model used for the ionic in-

teractions is the Sine-Gordon field theory extensively dis

2

—— g=0.1

Mp (19
Py /Py

o

10
L in units of Debye length I,

FIG. 3. The ratio of the exact two-loop resunél) for the dis-
joining pressure and the approximate re@[ff) given in Eq.(57).
Pglc) is seen to be a good approximation umtibecomes small or
larger thanL" as defined by Eq60) (L" ~ 16 for g=0.5).

pelled from the film leaving a nonionic water-filled film. The
only, and therefore exact, contribution is the Casimir term

due purely to the presence of the dielectric discontinuities.

The question arises how largecan be taken before the
loop expansion breaks down. The only evidence is from the
calculation of the bulk Debye pressure where the Debye-
Huckel correction to the ideal value, is

g
Pe=Pol1-2].
B 0( 6)

This suggests that the expansion parameter might be as small
as g/6. However, we know that the two-loop term is
O[g In(g)] and that our calculation deals with the effects of
an interface whose physics is completely different from that
of the bulk. Nevertheless, we may take this result as an in-
dication of what we might expect.

We might have expected that the leading lakgeentri-
bution from Pfjl) behaves in a similar manner to that of the
one-loop contribution, namely

(63

A
PP~ - [exp(=2L). (64)

However, the analysis of the larde behavior shows a de-
parture from expectations because of subtle contribution
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from the image charges; we see from E86) and from Fig.
1 that the leading largk-term behaves as

PP~ - gA’@exq— 2L). (65

This result implies that for sufficiently large the loop-
expansion fails to converge sindégl) will become larger

PHYSICAL REVIEW E/0, 011101(2004

The conclusion of this paper is that the naive loop expan-
sion of the free energy for these systems is invalid in the
presence of a dielectric discontinuity, and a careful resum-
mation of higher loop-order terms must be employed to
properly take into account the Boltzmann weight of image
charges. Furthermore, at two-loop order as generated by the
cumulant expansion, the disjoining pressure is finite without

thanPgo). We suggest that higher-order loop contribution canthe need for the introduction of an ultraviolet regulator. In
be resummed to give an anomalous exponent as shown gfdition, we have shown that the two-loop disjoining pres-
Eq. (59); this point requires further investigation. However, sure is negative fot >0 and so enhances the attraction be-
for physically relevant conditions the loop expansion will between the interfaces predicted at one-loop order.

valid.
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