
Resummed two-loop calculation of the disjoining pressure of a symmetric electrolyte soap film

D. S. Dean1,2,* and R. R. Horgan1,†

1DAMTP, CMS, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
2IRSAMC, Laboratoire de Physique Quantique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 04, France

(Received 9 March 2004; published 15 July 2004)

In this paper we consider the calculation of the disjoining pressure of a symmetric electrolytic soap film
correct to two loops in perturbation theory. We show that the disjoining pressure is finite when the loop
expansion is resummed using a cumulant expansion and requires no short distance cutoff in order to give a
finite result. The loop expansion is resummed in terms of an expansion ing= lB/ lD where lD is the Debye
length andlB is the Bjerrum length. We show that there there is a nonanalytic contribution of orderg lnsgd. We
also show that the two-loop correction is greater than the one-loop term at large film thicknesses suggesting a
nonperturbative correction to the one-loop result in this limit.
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I. INTRODUCTION

The determination of the effective interaction between
two surfaces of a film-like structure is essential for the un-
derstanding of the conformational stability of a whole range
of systems in soft-condensed matter physics. Examples are
found in interactions between membranes and colloid phys-
ics [1]. The effective interaction between two semi-infinite
dielectrics separated by a vacuum was calculated by Lifshitz
[2] and the effect of an intervening dielectric was determined
by Dzyaloshinski, Lifshitz, and Pitaevskii[3] and subse-
quently reformulated more simply in Ref.[4]. The effective
interaction is due to van der Waals or dispersion forces and is
given by the sum over the Matsubara modes of the problem;
the nonzero frequency modes are a quantum effect and the
contribution of zero modes correspond to a thermal Casimir
type effect. In purely dielectric problems the contribution of
each mode is described by a free Gaussian field theory and it
has been shown how the input to these free field theories can
be determined using dielectric data, see Ref.[5], and refer-
ences therein.

In many situations, especially in biology, the middle slab
of the system is filled with an electrolyte. For example, this
is the case for a simple soap film connected to a bulk which
is filled with an aqueous salt solution. It has been argued[6]
that the presence of an electrolyte will not effect the nonzero
frequency contribution to the interaction basically because
the response time of the ions is too large to couple them to
the these nonzero frequency modes. However the zero-
frequency, or static, component of the interaction does
couple to the ionic distribution and consequently its contri-
bution is strongly affected by the presence of electrolyte. The
field theory describing the zero frequency fluctuations of the
electric field in the presence of ions is no longer a free field
theory; the interactions are made up of two components: the
basic thermal fluctuations of the electrostatic field and the
induced Coulombic interactions between the ions. In the

presence of a neutral surface and a symmetric monovalent
electrolyte the mean-field electrostatic potential is zero and
the one-loop contribution about this trivial mean-field solu-
tion is equivalent to Debye-Hückel theory. The one-loop re-
sult is described and computed in Ref.[5] and has been
rederived using a variety of different methods, for instance
see Refs.[7,8]. In the absence of electrolyte the zero fre-
quency contribution to the effective interaction, commonly
known as the disjoining pressurePd, behaves asPd<−A/ l3

for a film of thicknessl. In the presence of electrolyte, at
large film separations relative to the Debye lengthlD, the
disjoining pressure is screened at one loop and has the form
Pd<−A exps−2l / lDd / l. In both of these cases the constantA
is positive and, hence, the effective force between the sur-
faces is attractive at one-loop order.

In this paper we calculatePd to two-loop order. The naive
two-loop calculation is in fact divergent when the dielectric
constant of the film, or slab, is greater than that of the exte-
rior [9], but we show here that the result can be resummed
using a cumulant expansion similar to that used in Ref.[10]
for the bulk to give a finite result which we argue is to be
expected on physical grounds. The expansion we use can be
controlled systematically, and the perturbative parameter is
g= lD / lB, wherelB is the Bjerrum length. While the one loop
or first term in the expansion ing is regular, the second order
term in g is of the form g2lnsgd, this singular behavior is
found in the Onsager-Samaras limiting law for the excess
surface tension of electrolyte solutions and has its origin in
the image forces which repel the ions from the air/water
interface. We also analyse the behavior of theOsg2d term for
large film thicknessl and find that this term has the behavior
−A8lnsl / lDdexps−2l / lDd / l, which means that it becomes
larger than the one-loop result for very thick films. We con-
jecture that this result suggests that it is the first term in a
series which sums to give a contribution at largel to the
disjoining pressure with behaviorPd<−A9exps−2l / lDd / la,
where the exponenta has the forma=1+a1g+a2g

2. . . .

II. TWO-LOOP CALCULATION

The model of the soap film we shall consider is the fol-
lowing. The film body is a planar slab of thicknessl sur-
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rounded on both sides by an external dielectric medium such
as air. The interior of the film is filled with electrolyte and
connected to a bulk reservoir of electrolyte. The electrolyte
consists of a passive solvent of uniform dielectric constant
containing monovalent anions and cations which are treated
as point charges of charges −e ande, respectively. The elec-
trolyte is symmetric in the sense that the anions and cations
are identical in every respect other than that they have oppo-
site electric charges.

In what follows we shall use the standard field theoretic
formulation for symmetric monovalent electrolyte systems
[11]. The grand partition function for a film of electrolyte
solution, surrounded on both sides by an external medium
such as air, of thicknessl is given by

JFsld =E dffgexpsSFff,lgd, s1d

where the actionSF of the film is given by

SFff,lg = −
be

2
E

FI

dxs=fd2 + 2mE
FI

dx cossebfd

−
be0

2
E

FE

dxs=fd2. s2d

The region inside the film is denoted byFI and, if z is the
coordinate perpendicular to the film surface, thenFI is the
regionzP f0,lg. InsideFI, the dielectric constant ise and is
taken to be that of the solvent, in most cases water, and the
fugacities for the cations and anions in this symmetric elec-
trolyte are the same and are denoted bym. The region out-
side the film is denoted byFE; in FE there is no electrolyte
and the dielectric constant is denoted bye0. In this paper we
consider the physically relevant case wheree.e0.

For a bulk solution of thicknessl the grand partition func-
tion is given by

JBsld =E dffgexpsSBff,lgd, s3d

whereSB is the bulk action

SB = −
be

2
E

B

dxs=fd2 + 2mE
B

dx cossebfd. s4d

Here there is no contact with an exterior region and one can
close the system by using periodic boundary conditions in
the z direction. The value of the fugacity is determined by
the bulk densityr and is given by

m =
r

kcossebfdlB
= Zr. s5d

Here,Z−1=kcossebfdlB is a renormalization factor account-
ing for ion self-interactions, and the expectation is taken at
an arbitrary position in an infinite bulk system, i.e, wherel
→`. In experiments on planar systems or films the physical
quantity which is measured is the disjoining pressure which
is due to the effective interaction induced by the presence of
the film surfaces. The disjoining pressure is the excess film

pressurePF over the bulk pressurePB and can be measured
exactly using a pressure cell[12]:

Pdsld = PFsld − PB. s6d

The film pressure depends explicitly on the film thickness
and is given by

PFsld =
1

A

]

] l
lnfJFsldg. s7d

The bulk pressure is defined in the thermodynamic limit and
is given by

PB =
1

A
lim
l→`

]

] l
lnfJBsldg. s8d

In order to develop a systematic expansion for the disjoining
pressure we pass to the rescaled model in terms of the res-
caled field

f →
Îg

eb
f, s9d

and we measure length in terms of the Debye lengthlD:

x → xlD, s10d

where m=Î2re2b /e is the Debye mass andlD=1/m. The
dimensionless couplingg is given by g= lB/ lD where lB
=e2b /4pe is the Bjerrum length. In units of the Debye
length we denote the thickness of the film byL= l / lD.

The disjoining pressurePd is obtained from the disjoining
pressure of the rescaled modelPd using

Pd = m3Pd = 8prgPd. s11d

The effective action for the film in terms of the rescaled
fields and lengths is

SF = −
1

8p
E

FI

dxs=fd2 +
Zsgd
4pg

E
FI

dx cossÎgfd

−
n

8p
E

FE

dxs=fd2, s12d

where n=e0/e and the renormalization factorZsgd simply
becomes

Zsgd =
1

kcossÎgfdlB

, s13d

where again the expectation value in the equation above is
for an infinite bulk system. The actionSF can be decom-
posed as

SF =
Zsgd
4pg

VF + SF
s0d + DSF, s14d

whereVF is the volume of the film and the first term is the
ideal contribution. The termSF

s0d is the action for a free or
Gaussian field theory and is given by
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SF
s0d = −

1

8p
E

FI

dxfs=fd2 + f2g −
n

8p
E

FE

dxs=fd2.

s15d

The interacting part ofSF is expressed as a perturbation

DSF =
1

4pg
E

FI

dxHZsgdfcossÎgfd − 1g +
gf2

2
J , s16d

and the actionSB for the equivalent bulk system is given by

SB = −
1

8p
E

B

dxs=fd2 +
Zsgd
4pg

E
B

dx cossÎgfd. s17d

Clearly SB is invariant underf→−f and, hence, from Eq.
(13) one must have the expansion

Zsgd = 1 +z1g + z2g
2 + z3g

3 + . . . . s18d

Using the same decomposition for the bulk action as for the
film action we obtain

SB =
Zsgd
4pg

VB −
1

8p
E

B

dxfs=fd2 + f2g +
1

4pg
E

B

dxHZsgd

3scossÎgfd − 1d +
gf2

2
J , s19d

whereVB is the bulk volume. To orderg the actionSB may
thus be written as

SB =
1 + z1g + z2g

2

4pg
VB −

1

8p
E

B

dxfs=fd2 + f2g

+
g

4p
E

B

dxFf4

4!
−

z1f2

2
G + Osg2d. s20d

Hence, in order to calculate lnsJBd to orderg one needs to
evaluateZsgd to orderg2. We define

Znsgd =
1

kcossÎgbfdln−1

, s21d

where the notationkOln signifies the expectation value ofO
evaluated tonth order in the cumulant expansion. ThenZn is
an approximation toZ correct up to and includingOsgnd.
Then we can writeSB correct to orderg as

SB =
Z2sgd
4pg

VB −
1

8p
E

B

dxfs=fd2 + f2g +
1

4pg
E

B

dxHZ1sgd

3fcossÎgfd − 1g +
gf2

2
J . s22d

Clearly calculating with the action above gives the value of
lnsJBd correct to orderg which includes the two-loop term
in the loop expansion coming from the termgf4/4! in the
interaction term. We might go further and expand the inter-
action term and keep only terms of orderg. However, when
we consider the computation of the partition functionJF for
the film we shall see that the naive expansion of the interac-
tion term in this manner is illegal because it gives rise to a

spurious divergence due to the image charge singularities. In
the expansion for the disjoining pressure we must first iden-
tify the correct Boltzmann factor associated with the image
charge potential, which is not expansible ing, and only then
may we expand the remaining contributions to orderg to
obtain the two-loop divergence-free result for the disjoining
pressure. We will find a term that behaves likeg lnsgd which
indicates that some contributions are indeed not expansible
in g. Therefore, at two-loop order we use the form forSB
given in Eq.(22) and a similar form form forSF which we
discuss later. Then toOsgd we have

lnsJBd =
Z2sgd
4pg

VB + lnsJB,0d + kDSlB,0 + Osg2d, s23d

where

JB,0 =E dffgexpsSB,0d, s24d

with

SB,0 = −
1

8p
E

B

dxfs=fd2 + f2g, s25d

and

DS =
1

4pg
E

B

dxHZ1sgdfcossÎgfd − 1g +
gf2

2
J . s26d

The last term is just the first term in the cumulant expansion
about the free field theory with actionSB,0 and is given by

kDSlB,0 =
E dffgexpsSB,0dDS

E dffgexpsSB,0d
. s27d

Inside the bulk we define

kfsxdfsxdlB,0 = GBs0d, s28d

by translational invariance within the bulk. This now yields

Z1sgd =
1

kcossÎgfdlB,0

= expFg

2
GBs0dG , s29d

and

lnsJBd =
Z2sgd
4pg

VB + lnsJB,0d +
VB

4pg
H1 +

g

2
GBs0d

− expFg

2
GBs0dGJ + Osg2d. s30d

One now carries out exactly the same calculation in the film
where within a film of thicknessL we define

kfsxdfsxdlF,0 = GFsz,Ld, s31d

where the field correlator at coinciding points now depends
on the distancez from the surface of the film andL, its
thickness;kfsxdfsydlF,0 is the propagator for the actionSF,0.
We then obtain toOsgd:
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lnsJFd =
Z2sgd
4pg

VF + lnsJF,0d +
1

4pg
E

VF

dxSexpH
−

g

2
fGFsz,Ld − GBs0dgJ +

g

2
GFsz,Ld

− expFg

2
GBs0dGD + Osg2d. s32d

In the limits L→` ,z→` ,z/L→0, we recover the expres-
sion for lnsJBd in Eq. (30). We note that the exponent of the
first exponential under the integral sign in Eq.(32) contains
the repulsive image charge potential which is singular asz
→0. Evidently, it is illegal to expand this exponential as it
stands and it is clear that it contains the correct Boltzmann
factor for the potential due to the image charges. In terms of
the rescaled system the disjoining pressure is then given by

bPd =
]

] L
B0sLd +

]

] L
B1sLd, s33d

where

B0sLd =
1

AHlnfJF,0sLdg − L lim
L8→`

lnfJB,0sL8dg
L8 J , s34d

is the one-loop orOs1d contribution in the expansion ing,
andA is the area of the film. The two-loop term, or term to
Osgd, is given by

B1sLd =
1

4pg
E

0

L

dzHexpF−
g

2
GRsz,LdG − 1 +

g

2
GRsz,LdJ ,

s35d

with

GRsz,Ld = GFsz,Ld − GBs0d. s36d

We note that there is no need to calculateZ2sgd, the ap-
proximation toZsgd accurate toOsg2d, in order to compute
the disjoining pressure, since this term is the same in both
the film and the bulk and hence cancels identically. We find

GRsz,Ld =E
1

`

dPH2G2sPdexps− 2PLd + GsPdexpf− 2PsL − zdg + GsPdexps− 2Pzd
1 − G2sPdexps− 2PLd J , s37d

where

GsPd =
P − nÎP2 − 1

P + nÎP2 − 1
. s38d

We can compare the result in Eq.(35) with the result of Netz
[9] where he computes the two-loop contribution to the free
energy of the film. When normalized with respect to the bulk
free energy, the result of Netz agrees with Eq.(35) expanded
to and truncated atOsgd. In the case whereD=0 the expres-
sion of Netz is indeed the disjoining pressure correct to two
loops. However, in the case whereD=s1−nd / s1+nd.0, i.e.,
when there is dielectric discontinuity in the system, the ex-
pression truncated atOsgd is divergent. As already remarked,
this is due to the presence of image charges which repel
charge away from the surface into the film whenD.0 as is
the case of air/water films, for example. Netz obtains a finite
result using this truncated expansion by introducing an ultra-
violet (UV) cutoff in the P integration definingGRsz,Ld in
Eq. (37). The UV cutoff is associated with a microscopic
length scale such as the ionic radius of the solute, and at
three loop order and above it can be shown that it is neces-
sary to impose such an UV cutoff in order to obtain a finite
result; the physical nature of the divergence in this case is the
collapse of opposite charged ions onto each other which is
then regulated by a hard-core repulsion. At two loops there is
no such effect and the UV cutoff is not needed to obtain a
finite result. Expanding the exponential in the expression for

B1 amounts to an illegal expansion of a Boltzmann weight
which keeps charge away from the surface. This term needs
to be treated with care as in the Onsager-Samaras[13] cal-
culation of the excess surface tension of ionic solution where
a similar term also arises. Any divergence arising from such
an illegal expansion is spurious.

We write

bPd = bPd
s0d + bPd

s1d, s39d

where Pd
snd is the Osgnd contribution toPd. The one-loop,

Os1d, contribution to the disjoining pressure has been
worked out by many authors and is given by

bPd
s0d = −

1

2p
E

1

`

P2dP
G2sPdexps− 2PLd

1 − G2sPdexps− 2PLd
. s40d

From the above equation we find the two-loop contribution
to be given by

bPd
s1d =

1

4pg
HexpF−

g

2
GRsL/2,LdG +

g

2
GRsL/2,Ld − 1J

+
1

4p
E

0

L/2

dz
]

] L
GRsz,LdH1 − expF−

g

2
GRsz,LdGJ .

s41d

We emphasize that this expression is finite for allL.0 and
requires no UV regularization.
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We may attempt to expand Eq.(41) to Osgd to get

bPd
s1d =

g

32p
G2sL/2,Ld +

g

8p
E

0

L/2

dzGRsz,Ld
]

] L
GRsz,Ld

+ Osg2d, s42d

thus giving what naively looks like the two-loop contribu-
tion.

The function Gsz,Ld can be shown to be finite every
where forzP f0,L /2g except atz=0. It is straightforward to
isolate the divergent part ofGRsz,Ld nearz=0, and we find
that

GRsz,Ld = D
exps− 2zd

2z
+ GR8sz,Ld, s43d

whereGR8sz,Ld is finite for all zP f0,L /2g. Hence, the first
term of Eq. (42) is finite but the second has a logarithmic
divergence atz=0 whenD.0. Introducing a largeP cutoff
in the integral in Eq.(37) definingGRsz,Ld, as was done in
Ref. [9], eliminates the 1/z singularity inGsL ,zd but has no
physical basis, in fact it is eliminating a physical effect
which should be there due to the presence of image charges;
the divergent term ofGRsz,Ld should be kept in the expo-
nential(which is just the Boltzmann factor due to the image
charges). We can now carry out a legal expansion ing for the
terms which give finite contributions, and obtain

bPd
s1d =

g

32p
GR

2sL/2,Ld +
g

8p
E

0

L/2

dzGR8sz,Ld
]

] L
GR8sz,Ld +

+
1

4p
E

0

L/2

dz
]

] L
GR8sz,LdF1 − expS−

gDe−2z

4z
DG .

s44d

We now write the two-loop contribution to the disjoining
pressure as the sum of these three terms

bPd
s1d = bPd

s1ad + bPd
s1bd + bPd

s1cd. s45d

The first two terms can be immediately written down and a
careful asymptotic analysis of the last term of Eq.(44) gives
a finite resummed two-loop contribution

bPd
s1ad =

g

32p
GR

2sL/2,Ld, s46d

bPd
s1bd =

g

8p
SE

0

L/2

dzHGRsz,LdF ]

] L
GR8sz,Ld −

]

] L
GR8s0,LdG

+ GR8sz,Ld
]

] L
GR8s0,LdJD , s47d

bPd
s1cd =

gD

16p
H ]

] L
GR8s0,LdF− lnSgD

2
D + 1 − 2gGJ ,

s48d

whereg=0.577 215. . . is Euler’s constant. We see from the
third term a contribution proportional tog lnsgd signifying

that the assumption thatPd can be naively expanded ing is
incorrect.

III. LARGE L ASYMPTOTICS

In this section we will analyze the asymptotic behavior of
the disjoining pressure of thick films. We start by recalling
the one loop result. At largeL the behavior of the integral
determiningPd

s0d in Eq. (40) is dominated by smallP, i.e.,
the contribution to the integration coming from nearP=1.
The leading term for largeL is [5]:

bPd
s0d < −

exps− 2Ld
4pL

. s49d

We see that the thick film disjoining pressure at one loop is
attractive and exponentially screened with characteristic
lengthlD. Interestingly, the value ofD does not appear in the
leading term of this expression which is therefore indepen-
dent of the strength of the dielectric discontinuity between
the film and exterior. For largeL we find that

GRsL/2,Ld < 2
exps− Ld

L
, s50d

and thus

bPd
s1ad <

g

8p

exps− 2Ld
L2 , s51d

which is clearly negligible with respect to the one-loop con-
tribution at largeL.

The behavior ofG8sz,Ld at largeL is given to leading
order by

GR8sz,Ld < exps− 2LdF1

L
+

1

2

1

L − z
exps2zd

+
1

2

1

L + z
exps− 2zdG + Hszd, s52d

where

Hszd =E
1

`

dPfsGsPd − Ddgexps− 2Pzd. s53d

Hence,

]

] L
GR8sz,Ld < − 2 exps− 2LdF1

L
+

1

2

1

L − z
exps2zd

+
1

2

1

L + z
exps− 2zdG . s54d

Using this result we find that for largeL the leading behavior
is

bPd
s1bd < −

g

16p

exps− 2Ld
L

HlnsLd + g +
8

1 − n2flns1 + nd

− n lns2dg + OS 1

L1/2,
lnsLd

L
DJ , s55d

and for the special casen=0 the nonleadingOs1/L1/2d cor-
rection is absent and this result becomes
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bPd
s1bd < −

g

16p

exps− 2Ld
L

FlnsLd + g +
1

2L
lnsLd + OS1

L
DG .

s56d

It can be shown that the coefficient of exps−2LdlnsLd /L is
independent ofn in the general case and is therefore given
for any value ofn by this result. Hence, as in the case ofPd

s0d,
the leading contribution toPd

s1d at largeL is also independent
of D.

We also find

bPd
s1cd < −

gD

4p

exps− 2Ld
L

f− lnsgD/2d + 1 − 2gd. s57d

We notice that if we take the contribution of the one-loop
term with the leading two-loop term then we have

bP < −
exps− 2Ld

4pL
F1 +

g

4
lnsLdG , s58d

which suggests the speculative resumation

bP < −
exps− 2Ld
4pL1−g/4 . s59d

If valid, the terms leading to this resumation must come from
higher-order terms in the cumulant expansion. It can be veri-
fied that they do not arise from higher-order terms ing in the
expansion of Eq.(41).

Examining the contributions tobPs1d as defined by Eq.
(45) at largeL we see thatbPs1ad is clearly subdominant, but
althoughbPs1bd is clearly the leading term at very largeL we
must bear in mind that this expansion is valid for smallg.
Comparing Eq.(56) with Eq. (57) we see that there exists a
crossover lengthL* defined by

L* , 1/g4, s60d

such that for 1!L!L* we havebPs1d<bPs1cd and thus in
this regionbPs1d has the same functional form a the one-loop
result. Thus only forL@L* does one see the modification of
the functional form ofbP with respect to the one-loop result.

IV. NUMERICAL RESULTS

The major result of this paper for the large-L asymptotic
behavior ofPd is the expression Eq.(55). In Fig. 1 we show
data points for

Rd
s1bdsLd =

16pL

g
e2LbPd

s1bd s61d

vs L computed numerically using Eqs.(37), (43), and (47)
for n=0. The solid line is the asymptotic form derived for
Rd

s1bdsLd from the expression in Eq.(56) but including a term
proportional to 1/L whose coefficient we determine by a fit
to the data. This fit curve is

Rd
s1bdsLd = − g − lnsLd −

1

2L
lnsLd −

1.453 54

L
. s62d

It is not useful to directly plotPd
s1d given in Eq.(41) since

it is a rapidly changing function ofL. However, the impor-

tant comparison is with the one-loop resultPd
s0d, which cor-

responds to the attractive Casimir force and which is present
even asr→0, that is,g→0. In this limit Pd

s0d arises solely
from the thermal fluctuations of the electrostatic field in the
presence of interfaces of dielectric discontinuity. In the limit
g→0 the two-loop contribution must vanish since the one-
loop result is exact; this can be seen in the expressions given
earlier. However, forg.0 we see thatPd

s1d is of the same
sign asPd

s0d and so corresponds to an increase in the attrac-
tive force. In Fig. 2 we plot the ratioPd

s1d /Pd
s0d for various

values ofg: g=0.1,0.3,0.5. We see thatPd
s1d is comparable

with Pd
s0d for g,0.5 over a wide range of values of the film

thicknessL. For small enoughL sLø2d the one-loop result
eventually dominates. It is clear thatPd

s1d scales, as expected,
approximately linearly withg in the small range considered.
The valueg,0.5 corresponds to a solute density in water of
about 50 mM at room temperature. This result shows that a
quantitative analysis of the collapse phenomenon in a thin
electrolyte soap film must take account of higher-order ef-
fects for solute densities greater than 10 mM. An important
point to note is that bothPd

s0d and Pd
s1d are negative for all

L.0, and so the two-loop contribution adds to the attractive
force between the interfaces.

In Fig. 3 we plot the ratioPd
s1d /Pd

s1cd where the denomi-
nator is the approximation toPd

s1d given in Eq. (57). This
approximation arises from the resummed terms which prop-
erly account for the Boltzmann factor associated with the
image charges. It is clear that this approximation is a good
one over a wide range of film thicknessL and shows that the
dominant contribution in this range behaves asg lnsgd. It is
clear that this should be the case in this range as in the case
g=0.5, from Eq.(3) L* ,16.

V. CONCLUSION

In this paper we have carefully calculated the two-loop
contribution,Pd

s1d, to the disjoining pressure for a thin elec-

FIG. 1. Computed data forRd
s1bdsLd given in terms ofPd

s1bd in
Eq. (61). The solid curve is the prediction for the asymptoticL
dependence from Eq.(55) with an additional fitted term propor-
tional to 1/L. The equation for this curve is given in Eq.(62).
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trolyte soap film of thicknessl and monovalent solute density
r. The surfaces of the film are the interfaces of dielectric
discontinuity separating the film interior of dielectric con-
stante from the exterior which consists of nonionic medium
of dielectric constante0. The length scales in the problem are
set by the Bjerrum lengthlB=e2b / s4ped and the Debye
length lD

−1=m=Î2re2b /e. The model used for the ionic in-
teractions is the Sine-Gordon field theory extensively dis-

cussed in earlier work[8]. All quantities can be expressed in
dimensionless form in terms of the coupling constantg
= lB/ lD and n=e0/e, with overall dimensions carried by the
Debye massm. By naive power counting theN-loop contri-
bution is theOsgN−1d. The self-energy divergences are in-
cluded in the explicit renormalization constantZsgd defined
in Eq. (5).

We have computedPd
s1d in the cumulant expansion of the

film free energy lnsJFd given in terms of the effective action
SFsf ,Ld defined in Eq.(12). Although, we are naively work-
ing to Osgd it is clear that it is illegal to expand all terms to
this order since the effect of image charges is to introduce a
spurious ultraviolet divergence in this case. As an ion at dis-
tancez from an interface approaches the interface the image
potential is repulsive and diverges likebVIszd<gD /2z,
where D=s1−nd / s1+nd. It is necessary to keep the Boltz-
mann factor expf−bVIszdg intact for this otherwise divergent
contribution, which is then regulated in the proper way. The
resulting expression forPd

s1d is given in Eq.(44). The out-
come is that the naive expectation that this contribution is
Osgd is incorrect and the asymptotic analysis of the expres-
sion for Pd

s1d gives the termPd
s1cd shown in Eq.(48) which

contains a term of orderg lnsgd. Moreover, in Fig. 3 we see
that the approximate expressionPd

s1cd contributes the major
part of the full result for smallL= l / lD, and so the collapse
phenomenon observed in thin electrolytic soap films may be
modified significantly by such nonanalytic terms. From Fig.
2 we observe that the two-loop and one-loop contributions
are comparable forg,0.5, corresponding to solute densities
r,50 mM. For L!1 we would still expect the one-loop
contribution, Pd

s0d, to dominate all others on physical
grounds; the image charges will ensure that all ions are ex-
pelled from the film leaving a nonionic water-filled film. The
only, and therefore exact, contribution is the Casimir term
due purely to the presence of the dielectric discontinuities.

The question arises how largeg can be taken before the
loop expansion breaks down. The only evidence is from the
calculation of the bulk Debye pressure where the Debye-
Hückel correction to the ideal valueP0 is

PB = P0S1 −
g

6
D . s63d

This suggests that the expansion parameter might be as small
as g/6. However, we know that the two-loop term is
Ofg lnsgdg and that our calculation deals with the effects of
an interface whose physics is completely different from that
of the bulk. Nevertheless, we may take this result as an in-
dication of what we might expect.

We might have expected that the leading large-L contri-
bution fromPd

s1d behaves in a similar manner to that of the
one-loop contribution, namely

Pd
s0d < −

A

L
exps− 2Ld. s64d

However, the analysis of the largeL behavior shows a de-
parture from expectations because of subtle contribution

FIG. 2. The ratio of the two-loop contribution,Pd
s1d, and the

one-loop contribution,Pd
s0d, to the disjoining pressure is plotted for

different values ofg= lD / lB: g=0.1,0.3,0.5. We see thatPd
s1d is

comparable withPd
s0d for g,0.5 over a wide range of values of the

film thicknessL. For small enoughL sLø2dthe one-loop result
eventually dominates. It is clear thatPd

s1d scales, as expected, ap-
proximately linearly withg in the small range considered. The
value g,0.5 corresponds to a solute density of about 50 mM at
room temperature.

FIG. 3. The ratio of the exact two-loop result,Pd
s1d for the dis-

joining pressure and the approximate resultPd
s1cd given in Eq.(57).

Pd
s1cd is seen to be a good approximation untilL becomes small or

larger thanL* as defined by Eq.(60) (L* ,16 for g=0.5).
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from the image charges; we see from Eq.(56) and from Fig.
1 that the leading large-L term behaves as

Pd
s1d < − gA8

lnsLd
L

exps− 2Ld. s65d

This result implies that for sufficiently largeL the loop-
expansion fails to converge sincePd

s1d will become larger
thanPd

s0d. We suggest that higher-order loop contribution can
be resummed to give an anomalous exponent as shown in
Eq. (59); this point requires further investigation. However,
for physically relevant conditions the loop expansion will be
valid.

The conclusion of this paper is that the naive loop expan-
sion of the free energy for these systems is invalid in the
presence of a dielectric discontinuity, and a careful resum-
mation of higher loop-order terms must be employed to
properly take into account the Boltzmann weight of image
charges. Furthermore, at two-loop order as generated by the
cumulant expansion, the disjoining pressure is finite without
the need for the introduction of an ultraviolet regulator. In
addition, we have shown that the two-loop disjoining pres-
sure is negative forL.0 and so enhances the attraction be-
tween the interfaces predicted at one-loop order.
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